We say a polynomial is a quadratic form if it is honogeneass of degree 2 , and a linear form it 't is homogenams of degree 1 .

Def: The multiplicatle complasty of a set $\left\{f_{1}, \cdots, f_{m}\right\}$ of quadratic forms in X_{1}, \cdots, X_{n} is

$$
\begin{aligned}
& L\left(f_{1}, \cdots, f_{m}\right):=\min (\# \text { of multiplication gates of } C \text {) } \\
& C \text { compute } \\
& t_{1}, \cdots, t_{m} \\
& \text { simadtareously } \\
& \text { Assume the addilton gates } \\
& \text { con compute }
\end{aligned}
$$

Def. A quadratic clrcout is arreli-coupucte of unbounded fan-in that has the form $\Sigma(\Sigma \times \Sigma)$.
So it looks like:

with minimum x gates
We would the to show that to compute (one or several) quadratic forms, It suffices to use quadratic clocults.
(stases)
Thu : For quadratic forms f_{1}, \cdots, t_{m},

$$
L\left(f_{1}, \cdots, f_{m}\right)=\min \left\{r: \begin{array}{l}
\exists \text { lInear forms } g_{1}, \cdots g_{r}, h_{1}, \cdots, h_{r} \\
\text { such that } f_{1}, \cdots, f_{m}\left(-\operatorname{span}\left\{g, h_{1}, \cdots, g_{r} h_{r}\right\}\right.
\end{array}\right\} .
$$

Pf: \leq : Suppose $f_{1}, \cdots, f_{m} \in \operatorname{span}\left\{g_{1}, h_{1}, \cdots, g_{r} h_{v}\right\}$. Then just build the quadratic cirun't
 \# multyplicatongates $=r$.
 Let S_{1}, \cdots, S_{r} be the outputs of the r multipleatien gates sit. S_{i} depends only on S_{1}, \cdots, s_{i-1}, (via a topological sort)
on s_{1}, \cdots, s_{i-1} (via a topological sort)
suppose $s_{i}=a_{2} \times b_{i}$.

Recall $H_{o m}(f)$ denotes the homogeneous degree $-k$ part of f.
Claim: $\operatorname{Hom}_{2}\left(S_{i}\right) \in \operatorname{spon}\left\{\operatorname{Hom}_{1}\left(a_{1}\right) \cdot \operatorname{Hom}_{\text {an }}\left(b_{1}\right), \cdots, \operatorname{Hom}_{1}\left(a_{i}\right) \cdot \operatorname{Hom}_{1}\left(b_{i}\right)\right\}$ for i=1,, r.
This claim is proved by induction on i.
Note $\operatorname{Hom}_{2}\left(S_{1}\right)=\operatorname{Hom}_{2}\left(a_{i} \cdot b_{2}\right)=\operatorname{Han}_{0}\left(a_{i}\right) \cdot \operatorname{Hom}_{2}\left(b_{2}\right)+\operatorname{Han}_{1}\left(a_{2}\right) \operatorname{Haman}_{1}\left(b_{2}\right)$

$$
\begin{equation*}
+H_{\text {on }}\left(a_{i}\right) \cdot H_{\operatorname{tand}}\left(b_{2}\right) \tag{*}
\end{equation*}
$$

Base case: $i=1$. As the computation of a_{1} and b_{1} does ut use multiplication,

$$
\begin{aligned}
& \operatorname{deg}\left(a_{1}\right), \operatorname{deg}\left(b_{1}\right) \leq 1 . S_{0} \operatorname{Hom}_{2}\left(a_{1}\right)=\operatorname{Hom}_{2}\left(b_{1}\right)=0 . \\
\Rightarrow & \operatorname{Hom}_{2}\left(s_{1}\right)=\operatorname{Hom}_{1}\left(a_{1}\right) \cdot \operatorname{Ham}_{1}\left(b_{1}\right) .
\end{aligned}
$$

 we just need to show $H_{o_{2}}\left(a_{i}\right), H_{\text {on }}^{2}\left(b_{i}\right) \in \operatorname{span}\left\{H_{m},\left(a_{1}\right) \cdot H_{\text {on }}\left(b_{1}\right), \ldots, H_{\text {ma }}\left(a_{2}\right) H_{m_{0}},\left(b_{i}\right)\right\}$.
Note a_{i} and b_{i} are linear coulmations over \mathbb{F} of elements in

$$
\begin{aligned}
& \mathbb{F} \cup\left\{X_{1}, \cdots, X_{n}\right\} \cup\left\{S_{1}, \cdots, S_{i-1}\right\} \\
& \text { So } \operatorname{Hom}_{2}\left(a_{2}\right), \operatorname{Ham}_{2}\left(b_{2}\right) \in S \operatorname{san}\left\{S_{1}, \cdots, S_{2-1}\right\} \\
& \left.\begin{array}{c}
\text { induction } \\
\text { nyprobess }
\end{array} \lambda \subseteq \operatorname{Span}\left\{\operatorname{Hom}_{1}\left(a_{1}\right) \cdot \operatorname{Han}_{1}\left(b_{1}\right), \cdots, \operatorname{Hon}_{1}\left(a_{3}\right) \cdot \operatorname{Hon}_{1}\left(b_{2}\right)_{2}\right)\right\}
\end{aligned}
$$

This proves the claim.
For $i=1, \cdots, m$, the output $f:$ of C is a linear combustion over \mathbb{F} of elawnts in

$$
\mathbb{F} \cup\left\{x_{1}, \cdots, x_{n}\right\} \cup\left\{S_{1}, \cdots, S_{r}\right\}
$$

As f_{i} is houngeneas of degree 2, $f_{i}=\operatorname{Hom}_{2}\left(f_{2}\right) \in-\operatorname{span}\left\{\operatorname{Hom}_{2}\left(s_{1}\right), \cdots, \operatorname{Ham}_{2}\left(s_{r}\right)\right\}$

$$
b_{y} \text { the } \operatorname{dain}^{-} \subseteq \operatorname{span}\left\{\operatorname{Ham}_{1}\left(a_{1}\right) \cdot \operatorname{How}_{1}\left(b_{1}\right), \ldots, \operatorname{Ham}_{1},\left(a_{r}\right) \cdot \operatorname{Hom},\left(b_{r}\right\}\right\}
$$

So $r=L\left(f_{1}, \cdots, t_{m}\right)$ is \leq RHS of The 1 .

So $r=L\left(f_{1}, \cdots, f_{m}\right)$ is \leq RHS of The.
A reformulation of $T h_{m} \mid$ is that there always exits a quadratic circuit computing f_{1}, \cdots, f_{m} with $L\left(f_{1}, \cdots, f_{m}\right)$ multiplications.

We say $f \in \mathscr{F}\left[X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{m}\right]$ is a bilinear form in $\left(X_{1}\right)$ and $\left(Y_{i}\right)$ if every monomial has the form $X_{i} Y_{j}$.
We say a quadrate circuit is a bllnour cluccuit in $\left(X_{i}\right)$ and $\left(Y_{i}\right)$ if every multiplication gate has
bilueror forms in $\left(X_{i}\right)$ and $\left(Y_{i}\right)$
the form $g{ }^{\otimes} \backslash_{h}$
g is a linerformine x^{\prime}. h in y 's.

Thu 2 : Suppose f, \cdots, f_{p} are computed by a quadratic crust with r multiplication gates. Then they are computed by a bilinear arouse with $2 m$ multiplication gates.

$$
\begin{aligned}
\text { Each } \begin{aligned}
\left(g_{i} h_{i}(x, y)=\right. & g_{i}(x, 0) h_{i}(x, 0)+g_{i}(x, 0) h_{i}(0, y) \\
& +g_{2}(0, y) h_{i}(x, 0)+g_{i}(0, y) h_{i}(0, y)
\end{aligned} . . \begin{array}{l}
\text { mavity }
\end{array} .
\end{aligned}
$$

As f_{1}, \cdots, f_{p} are bilkear in $\left(x_{i}\right)$ and $\left(y_{i}\right)$,

$$
f_{1}, \cdots, f_{p} \in \operatorname{span}\left\{g_{i}(x, 0) h_{i}(0, y), g_{i}(0, y) h_{i}(x, 0): 1 \leq i \leq r\right\} .
$$

Dense by $L^{*}\left(t_{1}, \cdots, t_{p}\right)$ the \# muttipliotion gales needed in a bilinear clecuct computing $t_{1}, \cdots f_{p}$. By Thu $2, \quad L\left(f_{1}, \cdots, f_{p}\right) \leq L *\left(f_{1}, \cdots, f_{p}\right) \leq 2 L\left(f_{1}, \cdots, f_{p}\right)$.
Tensor mark.
Def: The tensor rank of a tensor $T \in \mathbb{F}^{n} \times \mathbb{F}^{m} \times \mathbb{F}^{p}$ is $\min _{r}\left\{T=\sum_{i=1}^{r} a_{i} \otimes b_{i} \otimes c_{1}, \begin{array}{l}a_{1}, \ldots, a_{r} \in \mathbb{F}^{n} \\ b_{1}, \ldots, b_{r} \in \mathbb{F}^{m} \\ a_{1}, \ldots, c_{r} \in F^{p}\end{array}\right\}$
Thu.: Let $f_{1}, \cdots ; f_{p}$ be bilinear forms in x_{1}, \cdots, x_{n} and y_{1}, \cdots, y_{m} wish $f_{k}=\sum_{\substack{\leq i i n \\ k \leq j \leq m}} c_{i j k} x_{i} y_{j}$
Let $T \in \mathbb{F}^{n} \otimes \mathbb{P}^{m} \otimes \mathbb{F}^{p}$ be a tensor defied by $T(i, j, k)=c_{i j k}$.
Then $L^{*}\left(f_{1}, \cdots, f_{p}\right)=\operatorname{rank}(T)$.
pf: \geqslant Let $T=\sum_{i=1}^{r} a_{i} \otimes b_{i} \otimes c_{i}, a_{i}=\left(a_{i, 1}, \ldots, a_{i, n}\right), b_{i}=\left(b_{i, 1,}, b_{i}, m\right), c_{i}=\left(c_{i, 1}, \ldots-c_{i-p}\right)$.

Wild a bilhear clucubt with r multiplication gates.
$c_{k}, \cdots, \cdots, l_{k}, r . \quad x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{m}$
\leqslant : reverse the proof to get a de composition $T=\sum_{i=1}^{n} a_{2} a b_{i} e c_{i}$ from the circuit.
Matrix Multiplication.

$$
Z_{i k}=\sum_{j=1}^{m} X_{i j} Y_{j k} \text { is bilker in }\left(X_{j j}\right) \text { and }\left(Y_{j k}\right), 1 \leq i \leq n, 1 \leq k \leq p
$$

The corresponding tensor is $\langle n, m, p\rangle:=\sum_{i=1}^{n} \sum_{k=1}^{p}\left(\sum_{j=1}^{m} e_{i j}^{x} e_{j k}^{y}\right) e_{i k}^{z}=\sum_{i \leq i \leq n} e_{i j}^{x} e_{j k}^{y} e_{i k}^{z} \quad \begin{aligned} & \text { where the } \\ & \text { in }^{j}-\text { then }\end{aligned}$

$$
\in \mathbb{F}^{n m} \theta \mathbb{F}^{m p} \otimes F^{n p} .
$$

Define $w:=\inf \left(\log _{n} \operatorname{rank}(\langle n, n, n\rangle)\right)$, called the matrix multiplication exponent.
Note $n^{2} \leqslant \operatorname{rank}(\langle n, n, n)) \leq n^{3}$. So $2 \leq w \leq 3$.
The for any constant ε, there' is an $O\left(n^{u+\varepsilon}\right)$-the algorthen computing the product of $\left(X_{i j}\right)$ and ($Y_{i n}$) (assuming t and x take unit time.)
Pf: Bydefrition, $\exists n_{0}$ depadig only on ε sit. $\operatorname{rank}\left(\left\langle n_{0}, n_{0}, n_{0}\right\rangle\right) \leqslant n_{0}^{\omega+\varepsilon}$,
View $\left(X_{j j}\right)$ and $\left(y_{j k}\right)$ as $n_{0 x} n_{0}$ block matrices with block size (u/wo)x(u/no) By Thu 3, \exists algorthen A_{0} comppity $n_{0} x k_{0}$ maters multiplication with n_{0}^{w+e} multiplications and α_{1}) additions.
 using A_{0}, with enterles replaced by
$\left(n / n_{0}\right) x\left(n / n_{0}\right)$ blocks. $\quad \Rightarrow T(n) \leq n^{\omega+\varepsilon}$
Multiplication of blocks tabes the $T\left(\mathrm{~h}_{\mathrm{mo}}\right)$
Addition takes time $O\left(\left(d u_{0}\right)^{2}\right)=O\left(n^{2}\right)$
Similarly, tine complexity of multiplying $n \times m$ and $m \times p$ matures can be bounded in terms of $\left.\inf _{k}(\log \operatorname{rank}<n k, m k, r k)\right)$.
Lemma: $\operatorname{rank}(\langle n, m, p\rangle)=\operatorname{rank}\langle\sigma(n), \sigma(m), \sigma(p)\rangle$ for any permutation σ of $\{n, m, p\}$.
pf. Recall $\langle n, m, p\rangle=\sum_{\substack{i=i=n \\ i<j \leq m \\ 1 \leqslant k \leq p}} e_{i j}^{x} e_{j k}^{y} e_{i k}^{z}$ We may revere $e_{i k}^{z} b_{y} e_{k_{i}^{z}}^{z} \Rightarrow\langle n, m, p\rangle=\sum e_{i j}^{x} e_{j k}^{y} e_{k j}^{z}$.
 of tr imp?
The 3 transpositions are hadled by renaming $e_{i, j}^{*} \rightarrow e_{j_{i}}^{*}, *=x, y, z$, together with oyckic

So, e,g, multiplying $n \times m$ and map matrices, and multiply sly $p \times n$ and $n \times m$ mather have the same complexity.
The: If $\operatorname{rank}\langle n, m, p\rangle \leq r$, then $\omega \leq \log _{(n n, p)^{1 / s}}=3 \log _{n m p} r$.
Pf: Note $\operatorname{rank}\left(T \otimes T^{\prime}\right) \leq \operatorname{rank}(T) \cdot \operatorname{rank}\left(T^{\prime}\right)$.
And $\left\langle n n^{\prime}, m m^{\prime}, p p^{\prime}\right\rangle=\langle n, m, p\rangle \otimes\left\langle n^{\prime}, m^{\prime}, \gamma^{\prime}\right\rangle$.
So $\langle n m p, n m p, n m p\rangle=\langle n, m, p\rangle \otimes\langle m, p, n\rangle \otimes\langle p, n, m\rangle$.
Then $\operatorname{rark}(\langle$ ump, nmp,nmp $\rangle)=(\operatorname{ran}\langle(\langle n, m) p)))^{3} \leqslant r^{3}$.

$$
\Rightarrow \omega \leq \log _{n_{m p}} r^{3}=3 \log _{n_{m p}} r .
$$

Thu $(S \operatorname{trassen} 169) \quad \operatorname{rank}(\langle 2,2,2\rangle) \leq 7 \Rightarrow w \leq \log _{2} 7=2.807 \ldots$
We now haw $\operatorname{rank}((2,2,2))=7 \quad$ (over $\mathbb{T}=\mathbb{C})$. (Wingrad'71).
Computing the tensor rank is NP-hand (Hastad 190).
Current record of w (William- $x_{u}-X_{u}$-zhou 23): $\omega \leq 2.371552$.
Conjecture: $\omega=2$.
Note: If the conjecture is false, then $\operatorname{rank}(\langle n, n, n))=\Omega\left(n^{2+\varepsilon}\right)$ for some $\varepsilon>0$. Then by Bawr-Strassen, $\sum_{1 \leq i, j, k \leq n} X_{i j} \cdot y_{j k} Z i k$ has goral circult lower bound $\Omega\left(n^{2+\varepsilon}\right)$
So a disproof of the conjecture improves $\begin{aligned} &=\Omega\left(N^{1+\varepsilon / 2}\right), \text { where } \\ & N=3 n^{2} \\ &=\# \text { variables. }\end{aligned}$ the best kuoun general cIrcuit lower bound!
Related work: (Andrens'22): Either $\omega=2$, or thee is a nontrivial PIT algouthm for circuits where \# multiplication gates is used as the complexity measure.
$\left(R_{a z}\right.$ ' $\left.B\right)$ Explant tensor $T:[n]^{r} \rightarrow F$ of tensor rank $\geqslant n^{r(1-0(1))}$, where $S(1) \leq r \leq \log n / \log \log n$, gives a super polynoulal lower bound for the size of general algebraic clecultes.

